Search results

Search for "energy dissipation" in Full Text gives 88 result(s) in Beilstein Journal of Nanotechnology.

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • increase in scanning frequency from 0.2 Hz to 1 Hz. This suggests that a faster scanning frequency can cause more wear. This increased wear may be attributed to low-cycle fatigue resulting from the higher speeds, which generate more heat and energy dissipation, thereby rendering the tip more susceptible to
PDF
Album
Full Research Paper
Published 14 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • in DPNR/GO-VTES(a) and DPNR/GO-VTES(b) may be responsible for a fast energy dissipation. Consequently, DPNR/GO0.5 which uses unmodified GO, shows both entropic and energetic elastic properties, as evidenced by the dependence of loss tangent versus frequency [34]. Conclusion Graphene oxide was
  •  11. The G'' values of DPNR and DPNR/GO-VTES(a) slightly decreased with frequency. However, the G'' values for the DPNR/GO and DPNR/GO-VTES(b) samples slightly increased as frequency increased. These distinguishable behaviors suggested that DPNR/GO and DPNR/GO-VTES(b) may have higher energy
  • dissipation while applying force than DPNR/GO-VTES(a) and DPNR. The loss tangent (tan δ) is defined as a G''/G' ratio. The dependence of tan δ with frequency for DPNR/GO samples was quite similar to that of DPNR, in which tan δ decreased as frequency decreased. This phenomenon is appointed to the pure
PDF
Album
Full Research Paper
Published 05 Feb 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • in the gas phase. Interestingly, a more extensive fragmentation is observed in the FEBID experiment, while by considering only energy dissipation, one would rather expect stabilization (i.e., the opposite effect). In DI, rearrangement reactions are found to be dominant among the fragmentation
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • drastically lower energy dissipation. А logical solution and the most promising candidate for radical reduction in energy consumption is the superconducting digital technology (SDT) based on Josephson junctions. The intrinsic Josephson effect, which was first reported by Reinhold Kleiner, Paul Müller, and co
  • -workers (see [4][5] and references therein) has been investigated by many researchers [6][7][8]. The energy consumption of the SDT basic element is of the order of 10−19 J, corresponding to up to seven orders of magnitude less energy dissipation than that for their semiconductor analog, even when the
PDF
Editorial
Published 10 Jan 2023

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • = ≈ 100,000. Note that the quality factor of the second flexural mode is not noticeably influenced by the interferometer operation point, but is typically considerably lower than Q1 (Q2 ≈ 10,000). We attribute this to energy dissipation arising by instabilities of the atomic positions of atoms inside the
  • for the coating of high-quality factor cantilevers for magnetic force microscopy [29]. In future work, much thinner coating thicknesses could be used, or the coating could be applied to the cantilever side to reduce energy dissipation processes arising from the grain boundaries of the polycrystalline
PDF
Album
Full Research Paper
Published 11 Oct 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • the NVE ensemble in order to avoid any impact of a thermostat on the collision cascade. Once properly equilibrated, the simulation of argon bombardment of pristine Si(100) was run for 50 ps, which was enough for the modelling of energy dissipation and sputtering, and then thermalized to 300 K. The
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

A superconducting adiabatic neuron in a quantum regime

  • Marina V. Bastrakova,
  • Dmitrii S. Pashin,
  • Dmitriy A. Rybin,
  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Anastasiya A. Gorchavkina and
  • Arkady M. Satanin

Beilstein J. Nanotechnol. 2022, 13, 653–665, doi:10.3762/bjnano.13.57

Graphical Abstract
  • with extremely small energy dissipation [42][43][44][45]. We especially note the demonstrated possibility of the adiabatic evolution of the state for a neuron in a multilayer perceptron with Josephson junctions without resistive shunting [46]. It is precisely such a heterostructure without resistive
PDF
Album
Full Research Paper
Published 14 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • deformation [38][39]) the energy dissipation was mainly caused by cell adhesion, which was a certain separation between the approach and retraction curves (Figure 5c). The results showed a negative correlation between viscosity values and substrate stiffness in PC-3 cells: the higher the substrate stiffness
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • considered a basic cell for superconducting signal neurocomputers designed for the fast processing of a group signal with extremely low energy dissipation. It turned out that for this purpose it is possible to modify the previously discussed element of adiabatic superconducting neural networks. The ability
  • deviation from the Gaussian-like function depending on the inductances l and lout of the G-cell. The bias flux is equal to 0.05π. (a) Dynamic transfer function of a Gauss-neuron for a trapezoidal external signal for different values of the rise/fall times of the signal tRF and (b) energy dissipation
PDF
Album
Full Research Paper
Published 18 May 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • friction or gear–lubricant friction are accounted for within the MD simulation in the form of an irreversible rotational kinetic energy dissipation. The energy of gear rotation can be transferred to deformation energy [49] or to the lubricants due to microscopic Lennard-Jones interactions. Angular velocity
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • angle of the probe, and δ is the indentation depth. Thus the E can be calculated by transforming the above equation: Hence the Young’s modulus can be calculated by fitting the linear part of the force–distance curves, that is, the slope of the force–distance curve. Energy dissipation is the loss of
  • mechanical energy during each trace–retrace cycle. The hysteresis in the force–distance curves between different types of cells indicates the energy dissipation. The dissipated energy can be calculated by the following formula, where W is the total amount of energy dissipation, and its value in the force
  • indicates that pancreatic cancer softens pancreatic cells. Also, there is energy dissipation manifested as hysteresis in a cycle of force–distance curves in all four kinds of cells. The results (Supporting Information File 1, Table S2) show that the hysteresis in the force–displacement cycle of HPDE6-C7 is
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • ]. 3 Applications of nanofluidics with tunable slip length 3.1 Drag reduction Reducing drag is of great significance in many areas related to nanotechnology, such as nanotribology [117], nanomedicine [118], and electrokinetics [119] due to the low energy dissipation. For instance, it has been reported
PDF
Album
Review
Published 17 Nov 2021

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • not solve the problem [3]. The future of high-performance computing will most likely be associated with one of the alternative “post-Moore’s” technologies where energy dissipation is drastically lower. It is expected that the most promising “post-Moore’s” candidate to lead the technological way is
PDF
Editorial
Published 10 Nov 2020

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • studies have explored different phenomena, such as energy dissipation and the proportion between elastic and viscous probe–sample interactions during the measurement [22][23][24][25][26][27]. A large number of publications have focused on the study of the phase signal (i.e., the lag of the oscillatory
  • relaxation in the sample, whereby the distance between the two force minima on the curve can be approximately thought of as the distance that the surface has yielded (relaxed) due to its viscous behavior, while the area of the loops represents energy dissipation [35]. In (b) the surface of material 1 relaxes
PDF
Album
Full Research Paper
Published 15 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • nonlinearly transform the incoming signal (neurons), which is connected by linear tunable connections (synapses). There are more than 106 synapses in the neural networks that are used in these applications. The energy dissipation at these interconnects is a serious problem, which motivates the search for
  • investigate neural networks (and primarily synapses) with an ultra-small energy dissipation. That was done based on adiabatic superconducting logic cells with the presentation of information in the form of magnitudes and directions of currents in the superconducting circuits [17][18][19]. The main problem in
PDF
Album
Full Research Paper
Published 07 Sep 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • were considered because the retraction curves have been previously shown to be affected by creep of the piezoelectric actuator and energy dissipation processes [51][52]. These artifacts and dissipation processes are indistinguishable from the interaction forces, rendering the retraction curves far more
PDF
Album
Full Research Paper
Published 06 May 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • of magnetic NPs (e.g., iron oxide and cobalt oxide NPs) into capsules allows them to respond to magnetic stimuli and produce heat due to magnetic energy dissipation, mechanical vibrations and motion induced in the film, thus releasing the cargo [80]. The Fe2O4-PAH capsules studied with A549 cancer
PDF
Album
Review
Published 27 Mar 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • the sample surface that cause a deformation of the surface structure. In this case, a non-conservative force induced by surface structure deformations acts between the tip and the sample surface [36][37] and the signal should be observed as an energy dissipation. In the case of surface deformation, a
PDF
Album
Full Research Paper
Published 10 Mar 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • of the pulse, i.e., the switching happens in less than 500 ps. According to the telegraph equations the actual voltage drop on the junction is 2VRefl. From this we estimate 50–100 pJ energy dissipation along the switching pulses, which is more than an order of magnitude smaller than the programming
PDF
Album
Full Research Paper
Published 08 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • manipulated on a silica substrate with an atomic force microscope (AFM) in tapping mode. Initially, the NPs were immovable by AFM energy dissipation. However, annealed NPs became movable, and less energy was required to displace the NPs annealed at higher temperature. However, after annealing at 800 °C, the
PDF
Album
Full Research Paper
Published 06 Jan 2020

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • plasmon decay for monometallic Ag. However, after Pt deposition the primary pathway for plasmon decay changed to absorption, indicating the thin Pt layer provided an alternate pathway for the dissipation of energy. Combined with electrodynamic simulations of spatial distributions of LSPR energy
  • dissipation, the experiments concluded that charge carriers produced in the Pt shell via LSPR excitation from the Ag nanocube core could be utilized for surface chemistry. Similarly, Zhang et al. coined the term “antenna–reactor” photocatalysis by fabricating Al, surrounded by a thin layer of Al2O3, as a
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

Graphynes: an alternative lightweight solution for shock protection

  • Kang Xia,
  • Haifei Zhan,
  • Aimin Ji,
  • Jianli Shao,
  • Yuantong Gu and
  • Zhiyong Li

Beilstein J. Nanotechnol. 2019, 10, 1588–1595, doi:10.3762/bjnano.10.154

Graphical Abstract
  • energy dissipation or delocalization is expected during impact. This study provides a fundamental understanding of the deformation and penetration mechanisms of monolayer GY nanosheets under impact, which is crucial in order to facilitate their emerging applications for impact protection. Keywords
  • to be transferred at a faster rate, thus, a better energy dissipation or delocalization is expected during impact. In this regard, we track the location of the highest stress during the simulation and estimate the elastic stress wave velocity (perpendicular to the fixed boundaries). As listed in
  • ≫ 1 [26]. Here, the first term refers to the minimum inelastic energy transferred to the sample and the second term represents the contribution from other energy dissipation mechanisms, e.g., bond breakage. As represents the strike face area (As = πr2, r is the radius of the projectile); and v is the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2019

Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”

  • Daria V. Popolitova,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2019, 10, 1548–1558, doi:10.3762/bjnano.10.152

Graphical Abstract
  • in the limit the energy dissipation due to the transition in the resistive state). Figure 7a shows schematically the information transfer in such a data bus. The role of the ASL elements here can be played by connected nSQUIDs, that is, interferometers with a negative mutual inductance of the
PDF
Album
Full Research Paper
Published 29 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • topography, environmental contamination, the Schwoebel–Ehrlich barrier, energy dissipation through viscoelastic energy losses, applied normal force, tip shape, and modulation frequency (both for CR and FMM modes). Each examination will show that the elastic modulus measured in the previous section is
PDF
Album
Full Research Paper
Published 03 Jul 2019
Other Beilstein-Institut Open Science Activities